
REPORT DOCUMENTATION PAGE AD-A255 839
*%Awsc .gfOn'Ag &td~n for thi N , 04'1 Of nM tO n -%e nIMAlld TO 611? Sqr 1o -04f Del Eli ii iill 111111111 1

qatPW'flq jfd rnat3aflmfl the data needeq, and (O ooIetifq n d A: .. 'n clie m O tofl 01 o,"la Oil liiIi 11 lii111 1111I
COdICCnt ~t Myrn.atO",n fokdV9 sqgest3n-i lot reducing this Ouratn to wai,rqton "P~atsune Ii f j IIfj jIj l,111 IIli
Davnii.' Sw.te 120. AllifiqtMn *4A 2 2 202.A30. and to I he Office of M an iten'nt ana Baaqel

1. AGENCY USE ONLY (Leave blank) 2.REPOR DATEtehcl-

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Scheduling by Iterative Partition of Bottleneck Conflicts NCC 2-707
F30602-88-C-00 1

6. AUTHOR(S)

Nicola Muscettola

7. PERFORMING ORGANIZATION~ NAME(S) AND ADDRESS(ES) B. PERFORMING ORGANIZATION
REPORT NUMBER

The Robotics Institute
Carnegie Mellon University CMU-RI-TR-92-05
Pittsburgh, PA 15213

9. SPONSORING, MONITORING AGENCY NAME(S) AND AODRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

NASA ,DARPA I

i2a. DISTRIBUTION AVAILABILITY STATEMENT . .-- * 12b. DISTRIBUTION CODE

Approved for public release;
Distribution unlimited

13. ABSTRACT Maximnum,1C0woras)
In this paper we describe Conflict Partition Scheduling (CPS), a novel methodology that Constructs solutions to
scheduling problems by repeatedly identifying bottleneck conflicts and posting constraints to resolve them. The
identification of bottleneck conflicts is based on a capacity analysis using a stochastic simulation methodology. Once a
conflict is identified, CPS does not attempt to resolve it completely; instead it introduces constraints that merely decrease
its criticality. By reducing the amount by which each scheduling decision prunes the search space. CPS ties to
minimize Lhe chance of getting lost in blind alleys. Moreover, the capacity analysis metrics computed at each decision
step give an indication of the areas of the search space where pruning is more likely to be effective. CPS effectiveness is
demonstrated by the results of an extensive experimental analysis that compares it to two current scheduling methods:
mnicro-opportunistic constraint-directed search and min-conflict Iterative repair. CPS is shown to significantly
outperform both of them on a standard benchmark of constraint satisfaction scheduling problems.

14. SUBJECT TERMS 15. NUMBER OF PAGES
14 pp

16. PRICE CODE

17. SECURITY CLASSIFICATION I18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

unlimited unlimited unlimited unlimited

Scheduling by Iterative Partition of Bottleneck Conflicts

Nicola Muscettola

CMU-RI-TR-92-05

The Robotics Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

February 1992

© 1992 Carnegie Mellon University

This work was sponsored in part by the National Aeronautics and Space Administration under
contract # NCC 2-707, the Defense Advanced Research Projects under contract #F30602-88-
C-001, and the Robotics Institute.

DEFENSE TECHN CL INrORMRTION CENTER

2 9 14 1104 9225210

Abstract

In this paper we describe Conflict Partition Scheduling (CPS), a novel methodology that
constructs solutions to scheduling problems by repeatedly identifying bottleneck conflicts and
posting constraints to resolve them. The identification of bottleneck conflicts is based or a
capacity analysis using a stochastic simulation methodology. Once a conflict is identified, CPS
does not attempt to resolve it completely; instead it introduces constraints that merely decrease
its criticality. By reducing the amount by which each scheduling decision prunes the search
space, CPS tries to to minimize the chance of getting lost in blind alleys. Moreover, the capacity
analysis metrics computed at each decision step give an indication of the areas of the search
space where pruning is more likely to be effective. CPS effectiveness is demonstrated by the
results of an extensive experimental analysis that compares it to two current scheduling methods:
micro-opportunistic constraint-directed search and min-conflict iterative repair. CPS is shown to
significantly outperform both of them on a standard benchmark of constraint satisfaction
scheduling problems.

Aoeesson For

NTIS GRA&I
DTIC TAB
Unar'noced
Jst Iac

By ..

D_ at 1ut ,

Avail and/or

lt Special

, , i I I III I

II |

1 Introduction
A wide array of real-life complex management problems, from space mission planning to large-
scale transportation planning to manufacturing production control, requires the solution of large
scheduling problems. In a nutshell, scheduling consists of determining an assignment of values
for the start and end time variables associated to a set of inter-related activities; such assignments
must comply with a set of user requirements (e.g., release dates and due dates), must satisfy
resource capacity constraints (e.g., no more than one activity can use a resource at the same time)
and, possibly, must optimize some performance criteria (e.g., each activity should occur as soon
as possible). Unfortunately, besides being NP-hard even in simple formulations, scheduling has
the reputation of being one of the combinatorial problems that most stubbornly resists effective
computational solutions.

In this paper we describe Conflict Partition Scheduling (CPS), a novel methodology that
constructs solutions to scheduling problems by repeatedly identifying bottleneck conflicts and
posting constraints to resolve them. The power of CPS stems from its two main characteristics:
the use of constraint-posting as the primary problem solving operator and the use of a stochastic
simulation methodology to extract measures of the characteristics of the intermediate partial
solution states.

In general, there are two main ways to build a schedule. The first proceeds by generating unique
assignments of values to state variables: this category includes simulation-based dispatching
scheduling [12], search-based and opportunistic heuristic approaches [51 [15], [14], and iterative
schedule repair [9] [16] [3]. The second way is to post additional sequencing constraints (e.g.,
activity x has to precede activity y) to exclude capacity conflicts, and deduce variable
assignments from the resulting network of constraints: besides CPS, this category includes other
heuristic [2] and search-based [1] approaches.

Intuitively, one would expect notable advantages in leaving flexibility within a plan/schedule.
While a schedule with all the time variables fixed to a value represents a single, completely
detailed operating condition, a constraint network can represent an entire set of legal behaviors
and allows the problem solver to concentrate on critical conditions, leaving open details that can
be easily adjusted at execution time (e.g., the sequencing of two operations that require the same
resource if the requests are not likely to be in conflict). This provides more robust and reliable
guidance during during activity execution in the presence of unexpected events. In this paper we
will concentrate on the advantages arising during schedule generation. In a value committment
approach, each time the value of a time variable is fixed, the dimensionality of the remaining
search space (i.e., the set of all the possible assignments of start and end times for the remaining
unscheduled operations) is collapsed by one. Alternatively, constraint-posting approaches, by
only restricting the range the problem's variables without a necessary loss of dimensionality,
leave available a higher number of possibilities at each problem solving state. This is an
important pre-condition to the development of more global measures of the search space and
suggests a lower danger for the scheduling algorithm to get lost in blind alleys.

To guide the introduction of new constraints, we need search space "metrics" that point to where
such introduction is most likely to be effective. Ideally one would like to estimate the
distribution of solutions over the search space in order to direct problem solving toward areas
with high solution density. Unfortunately, this might require to actually generate solutions,
which in the case of scheduling problems is extremely hard in and of itself. CPS uses the
opposite approach: it looks for areas where there is high likelyhood of not finding a solution and
posts constraints to move away from them. Similarly to most of the current bottleneck-guided
scheduling approaches till [15] [3] [14] [21, CPS computes its focusing metric on a relaxed
version of the original problem space. In particular, CPS ignores the capacity limitations of the
original scheduling problem, allowing a resource to process more than one operation at a time.
The lack of disjunctive capacity constraints in the relaxed space allows a very fast generation of

2

consistent value assignments. The focusing mechanism of CPS stochastically generates a sample
of value assignments in the relaxed space and compiles statistics on the likelihood of contention
out of the generated sample.

The results reported in this paper demonstrate the superiority of the constraint posting approach
embodied in CPS with respect to value commitment scheduling approaches. In particular, we
show through the results of an extensive experimental analysis that CPS outperforms two
dominant heuristic scheduling methodologies: micro-opportunistic search [14] and min-conflict
iterative repair [9]. CPS is able to reliably solve tougher problems than possible with the two
considered value commitment approaches.

In the rest of the paper, section 2 describes the CPS methodology, introducing the underlying
representation principles (section 2.1), the details of the capacity analysis (section 2.2) and the
basic scheduling cycle (section 2.3). Section 3 reports the results of the experimental analysis.
Section 3.1 describes the class of scheduling problem over which the analysis has been
conducted. Sections 3.2 and 3.3 briefly describe-the two-competing methods. Section 3.4 reports
the experimental results. Finally, Section 4 reports conclusions and future directions.

2 Conflict Partition Scheduling

2.1 Domain Representation Principles and Notation
CPS is implemented in the HSTS planning and scheduling framework [7]. HSTS addresses
problems that involve the determination of sets of behaviors of a dynamical system [10] [4] by
explicitly assuming a decomposition of the state of the dynamical system into a vector of state
variables, each of which can assume at any point in time one and only one of a given set of
possible values. HSTS has shown the ability of addressing complex planning and scheduling
problems [71 [6].

Here we restrict our attention to scheduling domains, i.e., domains where each state variable is a
resource that can only assume only one of two values at a given time:
PROCESSING(?task,?resource) and IDLE. The problem is defined by a list of available
resources and a network of goals. Each goal is a time interval, or token, with its duration
bounded by an interval [d,D] and labeled with with a value of the kind
PROCESSING(TaskiResourcek). Goals within the network can be related by metric interval
temporal relations: for example , T1 before([d, D]) 't2 indicates that the start time of t 2 is
constrained to occur after the end time of cl, with a delay included in the interval [d, D]. To
simplify the exposition, in the following we will assume that the initial network contains only
before temporal relations. Underlying the goal token network there is a network (V ,, C) of time
variables and metric interval distances, that we call time points network. Time propagation
through this network allows deduction of a range of possible time values for each token start and
end time point: in particular, we will identify with EST(r) the lower bound of the interval
associated to the start time of the token 'r and with LFT(,) the upper bound of t's end time. A
given a token t can be allowed to occur (e.g., a task could be allowed to be in process on a
resource) at any time EST(r) <_ t < LFT(t). In the following, we will assume time to be discrete
and identify with H the problem horizon, i.e., the segment of time over which we want to
generate behaviors. The primitive operation that we will use to refine a goal network into a
schedule is the introduction of an additional before ([0, +oo]) relation between tokens requiring
the same resource; a schedule is achieved when enough constraints have been added to insure
that no two such tokens can occur at the same time.

3

2.2 Stochastic Capacity Analysis
CPS computes search space metrics through a stochastic capacity analysis that extends and
generalizes the one first proposed in [Muscettola&Smith87]. The logic behind the method is
quite simple. Generating consistent schedules from an intermediate problem solving state is
complicated by the presence of unresolved disjunctive sequencing constraints (i.e., two tokens
using the same resource must necessarily follow one another); alternatively generating
assignments that satisfy the constraints that are explicitly represented in the network is very easy,
even considering additional preference criteria (e.g., select times as soon as possible). Therefore,
the method relaxes the implicit capacity constraints and uses a simple strategy that includes
preference information to generate a set of complete variable assignments. Then, it reintroduces
the resource capacity constraints and analyzes where the simulation strategy has performed the
worse with respect to them (i.e., more than on token requiring the same resource occurs at the
same time). The higher the possibility of capacity conflicts for a given set of tokens, the more
urgent the need to arbitrate start and end time assignments among them by introducing additional
sequencing constraints.

More precisely, given the time points network (V ,, C,), a complete value assignment to the
variables in V, consistent with the constraints in C, is obtained through a stochastic simulation
of the network; the following steps are repeatedly applied until all variables in V, have a value:

1. select a variable t r Vt according to a predefined variable selection strategy;

2. select a value for t within the current range of its possible values, according to a
stochastic value selection rule;

3. assign the value to t and propagate the consequences throughout the time point
network; the results are new ranges of possible values for the variables in V,;

4. delete t from V.

At the end of a stochastic simulation, all the tokens in the goal network have a definite start and
end time. It is now possible to evaluate the effect of their planned occurrence with respect to
their requests for resource availability. For each token we record the time interval of occurrence;
also, for each resource and each instant of time within the scheduling horizon H, we record how
many tokens require its use.

After repeating the stochastic simulation cycle N times, we gather statistical metrics to

summarize the overall process. In particular, we compute the two following metrics:

e token demand: for each token t and for each time EST(,c)<_ ti < LFT(r), token
demand A(t, ti) is equal to nI/N, where nt, is the number of stochastic simulations

in which the token's interval of occurrence overlaps ti.
* resource contention: for each resource p and for each time tj within the scheduling

horizon H, resource contention X(p, tj) is equal to n,.IN, where nt is the number of
.1 J

stochastic simulations in which p is requested by more than one token at time ti.

Token demand and resource contention represent the effects of the simple value assignment
strategy from two distinct points of view. Token demand gives an indication of how much a
token relies on the availability of the corresponding resource at a certain time: the higher the
demand, the more the assignment strategy relies on the availability of the resource at that time
for that token. Resource contention, on the other end, gives an indication of the level of
inadequacy of the simple assignment strategy in generating consistent schedules; the higher the
resource contention at a given time, the higher the need to introduce additional constraints to

4

attend to the "assignment congestion" for the tokens that rely on that time.

The stochastic simulation described before is parametric with respect to both variable selection
strategy and value selection rule. Several alternatives are possible. A very simple variable
selection strategy is forward temporal dispatching. A set of time variables, or open set, is
initialized to the sources of the time point network, i.e., the time points with no incoming
temporal constraints. Variable selection proceeds by first extracting one variable from the open
set and then updating the open set for the next iteration. During the update, all the time points
that follow the selected time point in a temporal constraint are considered for introduction in the
open set; a candidate time point is actually inserted in the open set if all its other incoming
temporal constraints originate from time points that have already been assigned a value.
Analogously, it is possible to define a backward temporal dispatching strategy. More
sophisticated strategies may involve the selection of variables according to predefined or
dynamically evaluated priorities. The stochastic value selection rule can change depending on
the preference that we might want to emphasize during the stochastic simulation. For example,
no preference can be reflected by a random value-selection- according to a uniform distribution.
Preference toward finishing as early as possible (as late as possible) can be introduced by
executing the random selection with respect to a monotonically decreasing (increasing)
distribution.

2.3 The scheduling process
The CPS process is driven by the identification of bottlenecks. We use the following formal
definition of a bottleneck:

* Bottleneck: Given the set of resource contention functions IX (p, .)} resulting from
a capacity analysis, we call bottleneck a pair (Pb,tb) such that:

X (pb,tb) = max (X (p,t)I

for any p r R and t E H such that {X (p,t) > 0).

A bottleneck identifies a neighborhood in the search space where the time assignment strategy
generates a maximum of inconsistency. Since this depends on several tokens requiring the same
resource at the same time in most of the value assignments, we need to sort these token requests.
However, in order to avoid unduly over-constraining the token network, we do not attempt to
completely resolve the conflict (e.g., by generating a complete ordering of the requests); instead
we follow a limited commitment approach, introducing constraints that will simply lower the
level of contention. In this way we attempt to perturb as the partial solution state as minimally as
possible. The rationale behind this is that, since the assignments reflect the preferences injected
in the stochastic simulation, we should try to find an intermediate state that is more consistent
but still near to the bulk of the stochastic value assignments to maintain a high level of solution
goodness. If we were to completely resolve a conflict, we would be forced to make decisions
without a precise idea of their impact on the rest of the network, possibly significantly lowering
the quality of the solution. From this point of view the method is closer to micro-opportunistic
approaches [141 than to macro opportunistic ones [15] [21.

The conflict resolution strategy can be briefly described as follows. First, a conflict is identified
in the set of tokens that maximally rely on the bottleneck (i.e., on the availability of Pb at time
tb). Then the conflict set is partitioned in two subsets, T and Tafter., and every token in
Tbefore is constrained to end before the start of any token in Tafter by the introduction of
appropriate before ([0, +-,]) constraints.

The basic scheduling cycle is described in Figure 1.

5

1. Capacity Analysis: estimate token demand and resource contention profiles using
the stochastic capacity analysis.

2. Termination Test: If the resource contention is zero for each resource over the
entire scheduling horizon, then exit. The current token network is the solution.

3. Bottleneck Detection: Identify resource and time with the highest contention;

4. Conflict Identification: Select the tokens that are most likely to participate in the
bottleneck conflict.

5. Conflict Partition: Sort the set of conflicting tokens by inserting appropriate
temporal constraints.

6. Constraint Propagation: Propagate the consequences of the introduction of the
new constraints to the time point network underlying the token network.

7. Consistency Test: If the time point network is inconsistent, exit with failure.

8. Go to 1.

Figure 1: The scheduler's basic cycle

The conflict resolution steps rely on the token demand functions A (t,.) constructed during
Capacity Analysis. Since scheduling preferences are embedded in the strategy used in the
stochastic simulation, we can observe that a value with a higher demand is also likely to have a
high level of preference. Therefore token demand can be also considered as a measure of relative
value utility on the range of times included in the token's time bound. Whichever interpretation
we use, however, we need a means to simplify comparisons among sets of these distributions.
The method we use is to summarize the demand function into a single parameter, the demand
centroid, given by:

LFT(r) - 1

E tA(,r, t)
W T =- EST(')

IA(t)LFT()- I

E A(t, t)
t=EST(r)

We will now discuss in depth the heuristics used during Conflict Identification and Conflict
Partition.

* Conflict Identification. We want to be sure that the introduction of temporal
constraints among the conflicting tokens leaves the time points network consistent.
Our Conflict Identification heuristic is designed to insure that no cycle could be
possibly introduced, whichever conflict partition is selected during the Conflict
Arbitration phase. The heuristic starts by identifying the set of candidate tokens
Tcand as the set of all tokens insisting on the bottleneck, i.e., all t that request Pb
such that EST(t)<tb<LFT(t). Then Tcand is sorted according to the distance of the
demand centroid from the bottleneck time, with:

'11<'E2 if I tA(C1) -rb I < ItA(C2) -to I

We construct the conflict set Tconf by cyclically augmenting it with the minimum
token in Tcand and deleting from Tcand the selected token and all the tokens that
precede and follow it in the token network. The selection is repeated until Tcand is
empty. If during the first selection cycle Tcand remains empty (i.e., the selected

6

token precedes or follows in the network all the tokens in Tcand), Tcand is restored to
the state preceding the selection cycle and the selection process resumes after having
eliminated the minimum token from Tcand.

When applied to a bottleneck, this Conflict Identification heuristic is guaranteed to
return a conflict set partitionable in two non-empty sets. In fact the identification of
a bottleneck confirms that there are at least two tokens with overlapping resource
requests for some legal assignment of times to the time point network. But this is
only possible if these two tokens are not constrained to occur sequentially.
Therefore there are at least two tokens that will not be eliminated by Tcand during
the selection process and will therefore be included in Tcof

Conflict Partition. The partition of the conflict set Tconf in Tbefore and Tafter relies
on the interpretation of the demand centroid as center of gravity of temporal
preferences. This is done by analyzing the mutual position of the demand centroids
and favoring the introduction of temporal constraints that respect this mutual
relation. In particular, a conflict centroid tconf is evaluated for Tconf as:

t Tconftconf - I c,¢

where I Tconfl is the cardinality of Tconf. For each token in Tconf the heuristic decides
on its assignment as follows:

S'C E Tbefore if tA(t) - tconf < 0

" T E Tafter if tA(t) - tconf > 0

" select randomly r E Tbefore or t E Tafper if tA(t) = tconf

Figures 2 and 3 illustrate the effects of the execution of a scheduling cycle on resource
contention and token time bounds.* The top graph of figure 2 shows the resource contention over
time for the bottleneck resource, while the bottom part shows the time bounds associated with
each of the tokens requesting the resource. The solid black segment at the far right of a time
bound represents the token duration; each token therefore displays a high degree of slack. The
tokens have been partitioned in Tbefore and Tafter sets.as a result of previous processing: in
particular, the 5 time bounds at the bottom constitute the Tbefore set while the 5 at the top belong
to Tafter. Bottleneck detection on the next cycle identifies tb= 140 as the new bottleneck time
and all the 5 top operations are selected to be part of the new Tcon0 . Figure 3 shows the result of
the partition of the new Tconfl; the level of contention around the bottleneck time has been
lowered and the resource contention function presents now three peaks, one for each of the new
time bound clusters identifiable in the figure. Notice that the slack associated with each time
bound is only slightly reduced by this partitioning.

*The figures were generated by using SAGE, a system for the automation of data presentation [131

7

O.b
1 .0.0

Op-
22

-
2

W 1 2 2-2-.. ..

05-82-2
0W-12-2 L.

05-92-2

09-92-2 SI4C. ; stf ,:2

060 N Uo 105

."1..... " 02 I

Figure 2: Initial bottleneck resource status

.2 . -.-... -2Op-eZ-a

op-S2-2

Af.... "°

Figure 3: Bottleneck resource status after a scheduling cycle

3 Experimental Analysis on Constraint Satisfaction Scheduling Problems

3.1 The problem

To demonstrate the viability of CPS, we compared its performance with respect to two state-of-
the-art heuristic scheduling methods that use the value commitment approach: micro-
opportunistic scheduling [Sadehl and rain-conflict iterative repair scheduling [Mintoni. The
analysis was conducted on a standard constraint satisfaction scheduling benchmark proposed by
[Sadehl. All problems in this benchmark suite satisfy the following formal definition.

The underlying dynamical system consists of m resources Pk The initial goals are described by n
disjoint linear token sequences, each of length m. Each token has a different fixed duration, so
the only variables that need value assignment are the token start times. For each sequence, or
job, each constituent token requires a different Pk than any other token in the sequence. The
pattern with which each job visits the m resources is arbitrary. In addition to the sequencing
constraints imposed by the jobs and the disjunctive ordering constraints imposed by the resource

8

capacity limitations (i.e., two tokens using the same resource must necessarily follow one
another), there are also release date cnnstraints (i.e., for each job i, iPs first token must start after
a release date ri) and due date constraints (i.e., for each job i, its last token must end before a due
date di.

The previous description identifies a job-shop scheduling problem. The main source of
complexity stems from the interaction of the temporal limits imposed by release and due dates
and the resource capacity limits. We seek a value assignment to the underlying time points
network tb' t satisfies the previous constraints; the lack of a goodness criterion to be maximized
makes this A constraint satisfaction problem.

3.2 Micro-Opportunistic Scheduling
Micro-opportunistic scheduling [141 adopts a value commitment approach within a constrained
heuristic search framework. The basic operator applied at each step of the search, consists of two
subsequent decisions: (1) select which start time variable (time point) should be assigned a
value; (2) select which value should be assigned to the variable. The method builds a solution by
iteratively extending consistent partial value assignments. The search chronologically backtracks
when no consistent extension of a partial assignment is possible, i.e., the range of the possible
values of some time point not yet committed to has become empty.

As in CPS, the focusing heuristics of micro-opportunistic scheduling are founded on computing
measures of resource contention and token demand in each search state. For example, conflicting
sets of tokens are selected by identifying a bottleneck with respect to a resource contention
measure. In contrast to CPS, different relaxation assumptions are made in different stages of the
search to compute different metrics; also, these assumptions are often stronger than those made
by CSP. This allows fast computability of the metrics using deterministic methods that start from
the underlying probabilistic characteristics of the relaxed space. However, complex constraint
interactions are ignored, which, in principle, limits the classes of problems for which the
relaxation assumptions are semantically correct. For example, one of the simplifying
assumptions for computing the resource contention measure is that all token demands are
generated independently one from the other, according to a uniform stochastic value selection
rule; this obviously ignores the interaction among the selection of start times for tokens
connected by chains of temporal constraints.

Micro-opportunistic scheduling has been successfully applied to the benchmark used in the
empirical analysis of this paper. In particular, micro-opportunistic scheduling has significantly
outperformed several other heuristic search approaches, both applicable to more general
constraint satisfaction and specifically tuned to the solution of scheduling problems.

3.3 Iterative repair scheduling
Min-conflict iterative repair 191 is an member of a family of scheduling methods based on the
repeated modification of inconsistent total value assignments. The value assigned to each time
point variable has an associated measure of conflict; this is obtained by considering all the
constraints included in the original problem definition that involve the time point variable and
adding together one inconsistency factor for each constraint. An inconsistent constraint
contributes with a +1 factor while a consistent constraint contributes with a 0 factor. The
constraints included in the measure of conflict for the scheduling problem are: (1) pairwise
constraints enforcing job sequentiality (i.e., the start of a token must follow the end of the token
immediately preceding it in the job); (2) pairwise constraints among tokens enforcing resource
capacity limitations (i.e., for each pair of tokens requiring the same resource, one token must
precede the other, with no preference on their ordering). In our implementation of the method,
release and due date constraints are guaranteed to be satisfied, since the the range of values for

9

each variable is obtained by propagating release and due dates through the job precedence
constraints. At each iteration, a variable is selected randomly among those whose values have a
positive conflict measure. The conflict measure is evaluated for all the possible values within
the range of the selected variable. Then, a value is assigned to the selected variable, randomly
selected within the set of values with minimum level of conflicts. The conflict measure for the
values of the variables related to the selected variable by some constraint is then updated to
reflect the new value assignment. This basic cycle is repeated until the conflict levels of all time
point values is equal to 0, at which point a solution to the problem is achieved.

As in CPS, the scheduling algorithm contains an intrinsic factor of randomness. However,
differently than in CPS and Micro-Opportunistic scheduling, randomness is not used as a means
for extracting search space metrics, but as the fundamental method for wandering around the
search space. The conflict metric used by the approach is very local in nature. Therefore, the
min-conflict approach would be expected to find difficulty in problems where tight interactions
among time variables limit the number of consistent value assignments to set of variables
making the generation of an assignment one component at a time difficult without a more global
view of the structure of the search space. The min-conflict iterative repair method has been
included in the SPIKE scheduling system [81 for the generation of long-term schedules for the
Hubble Space Telescope.

3.4 Experimental Comparison
This section reports the results of the experimental analysis. The scheduling problems used are
the Constraint Satisfaction Scheduling benchmark used in [14]. The benchmark consists of 6
groups of 10 problems, each problem including 10 jobs and 5 resources. The set of problems
differ with respect to: (1) spread of the release and due dates among jobs; (2) number of a-priori
bottlenecks. The spread is controlled by varying the amplitude of the intervals within which
release and due dates are generated. The benchmark includes three spread levels: wide (w),
narrow (n) and null, i.e., both release and due date intervals are collapsed to single points (0). An
a-priori bottleneck is introduced by selecting a position in the job's sequence of tokens and
forcing all the tokens in that position to use the same resource (e.g., the second token of all jobs
requires resource P2). fhe benchmark includes problems with I and 2 a-priori bottlenecks**

Conflict Partition Scheduling (CPS) was run on the benchmark. Since the criterion of success
does not include any particular preference on the characteristics of the solution, the stochastic
simulation was tuned to obtain maximum performance, using a forward temporal dispatching
variable selection strategy and a uniform value selection rule. At each scheduling cycle, capacity
analysis was conducted on the basis of N = 100 runs of the stochastic simulation. We also ran
our implementation of a Min-Conflict Iterative Repair scheduler (MIN CONF). Since the method
could cycle indefinitely, we set 5000 as an upper limit on the number of repair cycles, after
which the run was considered unsuccessful. The maximum number of cycles was selected so that
the maximum processing time spent by MIN CONF on a problem would approximately equal
the longest run time of CPS. The performance data concerning the constraint satisfaction
method of micro-opportunistic scheduling (MICRO OPP) are taken from [14]). The search was
run with an upper limit of 1000 on the number of states generated. Given the intrinsic random
nature of both CPS and MIN CONF, these algorithms were each run 5 times for each problem
instance in order to test the repeatability of the results. This is not necessary for MICRO OPP, it
being a deterministic algorithm.

Table I reports the comparative performance results. Each column reports the number of
problems in the benchmark that were solved by CPS, MIN CONF and MICRO OPP. The rows

"For a more detailed description of the benchmark see 114]

10

are labeled with the spread and bottleneck parameters of the problems set in the benchmark; for
example label w/2 refers to problems with wide spread and two a priori bottlenecks. Each
number in parenthesis represents a repeatability measure for the results, i.e., the average fraction
of runs that succeeded for a problem in the problem set for which a solution was found. No
repeatability measure is needed for MICRO OPP since its scheduling algorithm is deterministic.
The last row of the table reports the total number of problems in the benchmark that were solved
by the different methods. The results clearly show that CPS outperforms both MIN CONF and
MICRO OPP.

MIN MICRO

CPS CONF OPP

w/1 10 (0.96) 10 (0.36) 10

w/2 9 (0.89) 3 (0.33) 10

n/I 10 (0.94) 5 (0.44) 8

n/2 10 (0.92) 1 (0.40) 9

0/1 10 (0.82) 4 (0.25) 7

0/2 9 (0.91) 0 8

58 23 52

Table 1: Comparative results

With respect to MICRO OPP, CPS consistently solved more problems in the toughest problem
categories (spread n and 0). It is fair to say that, when both MICRO OPP and CPS succeeded,
MICRO OPP's run times were significantly shorter than CPS's; when CPS alone succeeded,
instead, the processing time of the unsuccessful MICRO OPP search was comparable or longer
than the time taken by CPS to succeed (possibly involving more than one run). Excluding any
improvements in CPS's run time due to more efficient implementations, the results still confirm
CPS superiority over MICRO OPP on the toughest problems.

The performances of MIN CONF were consistently inferior than both CPS and MICRO OPP***
On the problems where a solution was found, MIN CONF usually converged relatively quickly;
however, the very poor repeatability measures still suggest that, on the average, CPS
outperforms MIN CONF also with respect to its efficiency. Notice that together with the
performance degradation due to decrease of problem spread, MIN CONF yields its worse
performance on the set of problems including two a-priori bottlenecks. The presence of several
bottlenecks in a scheduling problem introduces complex interactions that are traditionally
difficult to deal in scheduling algorithms. The results confirm the expectation that the local
nature of the measure of conflict used in MIN CONF is unable to detect such interactions.

**0In fact, they also are inferior to any of the heuristic search methods to which MICRO OPP is compared in [14].

11

4 Conclusions
This paper describes the Conflict Partition Scheduling methodology and gives supports to the
claim that CPS is an effective way to solve difficult scheduling problems. The framework
presented here is based on a strictly monotonic problem solving approach. While the capacity
analysis seems adequate to orient constraint posting, unavoidable imprecision of the method
sometimes causes the scheduling process to fail. To avoid this, we need to either flexibly tune
the precision of the capacity analysis, (increasing the number of runs of the stochastic
simulation), or introduce backtracking and the possibility of (local) search. Future work will
also demonstrate the extensibility of the technique to the solution of optimization scheduling
problems, where, besides consistency, we must also achieve a high value for a given goodness
criterion.

12

Acknowledgments
The author thanks Stephen Smith for his helpful comments on an earlier draft of this paper.

13

REFERENCES
[1] Applegate, D., Cook, W.

A Computational Study of Job-Shop Scheduling.
Technical Report CMU-CS-90-145, School of Computer Science, Carnegie Mellon

University, 1990.

[21 Adams, J., Balas, E., Zawack, D.
The shifting Bottleneck Procedure for Job Shop Scheduling.
Management Science 34, 1988.

[3] Biefeld, E., Cooper, L.
Bottleneck Identification Using Process Chronologies.
In Proceedings of the 12th International Joint Conference on Artificial Intelligence.

1991.

[4] Dean, T., Wellman, M.
Planning and Control.
Morgan Kaufmann, 1991.

[5] Fox, M.S., Smith, S.F.
ISIS: A Knowledge-Based System for Factory Scheduling.
Expert Systems 1(1):25-49, 1984.

[6] Frederking, R.E., Muscettola, N.
Temporal Planning for Transportation Planning and Scheduling.
In Proceeding of 1992 IEEE International Conference on Robotics and Automation (to

appear). 1992.

[7] Muscettola, N., Smith, S.F., Cesta, A., D'Aloisi, D.
Coordinating Space Telescope Operations in an Integrated Planning and Scheduling

Architecture.
IEEE Control Systems Magazine 12(2), 1992.

[8] Johnston, M.D.
SPIKE: AI Scheduling for NASA's Hubble Space Telescope.
In Proceedings of the 6th Conference on Artificial Intelligence Applications, pages

184-190. IEEE Computer Society Press, 1990.

[9] Minton, S., Johnston, M. D., Philips, A. B., Laird, P.
Solving Large-Scale Constraint Satisfaction and Scheduling Problems Using a Heuristic

Repair Method.
In Proceedings of the 8th National Conference on Artificial Intelligence. 1990.

[101 Muscettola, N.
Planning the Behavior of Dynamical Systems.
Technical Report CMU-RI-TR-90-10, The Robotics Institute, Carnegie Mellon

University, 1990.

[11] Muscettola, N., S.F. Smith.
A Probabilistic Framework for Resource-Constrained Multi-Agent Planning.
In Proceedings of the 10th International Joint Conference on Artificial Intelligence,

pages 1063-1066. Morgan Kaufmann, 1987.

14

[121 Panwalker, S.S., W. Iskander.
A Survey of Scheduling Rules.
Operations Research 25:45-61, 1977.

[13] Roth, S.F., Mattis, J.
Automating the Presentation of Information.
In Proceedings of the Conference on Artificial Intelligence Applications. IEEE, Miami

Beach, February, 1991.

[14] Sadeh, N.
Look-Ahead Techniques for Micro-Opportunistic Job Shop Scheduling.
Technical Report CMU-CS-91-102, School of Computer Science, Carnegie Mellon

University, 1991.

[15] Smith, S.F., Ow, P.S., Potvin, J.Y., Muscettola, N., and Matthys, D.
An Integrated Framework for Generating -and Revising Factory Schedules.
Journal of the Operational Research Society 41(6):539-552, 1990.

[16] Zweben, M., Deale, M., Gargan, R.
Anytime Rescheduling.
In Proceeding of the DARPA Workshop on Innovative Approaches to Planning,

Scheduling and Control. 1990.

